Joint Target Tracking, Recognition and Segmentation for Infrared Imagery Using a Shape Manifold-Based Level Set

نویسندگان

  • Jiulu Gong
  • Guoliang Fan
  • Liangjiang Yu
  • Joseph P. Havlicek
  • Derong Chen
  • Ningjun Fan
چکیده

We propose a new integrated target tracking, recognition and segmentation algorithm, called ATR-Seg, for infrared imagery. ATR-Seg is formulated in a probabilistic shape-aware level set framework that incorporates a joint view-identity manifold (JVIM) for target shape modeling. As a shape generative model, JVIM features a unified manifold structure in the latent space that is embedded with one view-independent identity manifold and infinite identity-dependent view manifolds. In the ATR-Seg algorithm, the ATR problem formulated as a sequential level-set optimization process over the latent space of JVIM, so that tracking and recognition can be jointly optimized via implicit shape matching where target segmentation is achieved as a by-product without any pre-processing or feature extraction. Experimental results on the recently released SENSIAC ATR database demonstrate the advantages and effectiveness of ATR-Seg over two recent ATR algorithms that involve explicit shape matching.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint Infrared Target Recognition and Segmentation Using a Shape Manifold-Aware Level Set

We propose new techniques for joint recognition, segmentation and pose estimation of infrared (IR) targets. The problem is formulated in a probabilistic level set framework where a shape constrained generative model is used to provide a multi-class and multi-view shape prior and where the shape model involves a couplet of view and identity manifolds (CVIM). A level set energy function is then i...

متن کامل

Joint view-identity manifold for infrared target tracking and recognition

We propose a new joint view-identity manifold (JVIM) for multi-view and multitarget shape modeling that is well-suited for automated target tracking and recognition (ATR) in infrared imagery. As a shape generative model, JVIM features a novel manifold structure that imposes a conditional dependency between the two shape-related factors, view and identity, in a unified latent space, which is emb...

متن کامل

Computation Optical Flow Using Pipeline Architecture

Accurate estimation of motion from time-varying imagery has been a popular problem in vision studies, This information can be used in segmentation, 3D motion and shape recovery, target tracking, and other problems in scene analysis and interpretation. We have presented a dynamic image model for estimating image motion from image sequences, and have shown how the solution can be obtained from a ...

متن کامل

Pedestrian detection and tracking in infrared imagery using shape and appearance

In this paper, we present an approach toward pedestrian detection and tracking from infrared imagery using joint shape and appearance cues. A layered representation is first introduced and a generalized expectation-maximization (EM) algorithm is developed to separate infrared images into background (still) and foreground (moving) layers regardless of camera panning. In the two-pass scheme of de...

متن کامل

Trends in Correlation-Based Pattern Recognition and Tracking in Forward-Looking Infrared Imagery

In this paper, we review the recent trends and advancements on correlation-based pattern recognition and tracking in forward-looking infrared (FLIR) imagery. In particular, we discuss matched filter-based correlation techniques for target detection and tracking which are widely used for various real time applications. We analyze and present test results involving recently reported matched filte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014